metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{N,N-bis[(diphenylphosphanyl)methyl]aniline- $\kappa^2 P, P'$ }copper(I) tetrafluoridoborate

Jing Shang,^a Li-Li Huang,^b Ting-Hong Huang,^a Kai Ma^a and Qing-Ling Ni^a*

^aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^bSiChuan College of Chemical Technology, Luzhou 646005, People's Republic of China

Correspondence e-mail: shangjing6688@yahoo.com.cn

Received 27 November 2010; accepted 10 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.059; wR factor = 0.198; data-to-parameter ratio = 14.5.

In the cation of the title compound, $[Cu(C_{32}H_{29}NP_2)_2]BF_4$, the Cu^I atom is four-coordinated in a distorted tetrahedral geometry by four P atoms from two *N*,*N*-bis[(diphenyl-phosphanyl)methyl]aniline ligands. In the crystal, the cations are linked by $C-H\cdots\pi$ interactions, forming chains along the *a* axis. Intramolecular $C-H\cdots N$ and intermolecular $C-H\cdots F$ hydrogen bonds are also observed.

Related literature

For the structures and properties of related copper(I) complexes, see: Saravanabharathi *et al.* (2002); Chen *et al.* (2004); Sivasankar *et al.* (2004); Wang *et al.* (2008); Huang *et al.* (2009).

Experimental

Crystal data $[Cu(C_{32}H_{29}NP_2)_2]BF_4$ $M_r = 1129.35$

Triclinic, $P\overline{1}$ a = 11.004 (2) Å b = 12.642 (3) Å Z = 2c = 21.725 (4) Å Mo $K\alpha$ radiation $\mu = 0.55 \text{ mm}^{-1}$ $\alpha = 79.601 \ (3)^{\circ}$ $\beta = 78.593 (3)^{\circ}$ T = 296 K $\gamma = 76.110 \ (3)^{\circ}$ $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$ V = 2847.7 (10) Å³ Data collection Bruker SMART 1000 CCD 9918 independent reflections diffractometer 6522 reflections with $I > 2\sigma(I)$ 15689 measured reflections $R_{\rm int} = 0.035$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.059$ 685 parameters $wR(F^2) = 0.198$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.47 \ \rm e \ \AA^{-3}$ 9918 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C33-C38 and C1-C6 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C22-H22···N1	0.93	2.53	3.189 (6)	128
$C7 - H7A \cdots F3^{i}$	0.97	2.25	3.181 (6)	161
$C18-H18\cdots Cg1^{i}$	0.93	2.72	3.653 (6)	177
$C42 - H42 \cdots Cg2^{ii}$	0.93	2.88	3.678 (5)	144

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Programme for Excellent Talents in Guangxi Higher Education Institutions and the Natural Science Foundation of Guangxi Province of China (No. 0832100).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2534).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chen, Y.-D., Qin, Y.-H., Zhang, L.-Y., Shi, L.-X. & Chen, Z.-N. (2004). Inorg. Chem. 43, 1197–1205.
- Huang, T.-H., Jiang, X.-F., Gui, L.-C., Wang, X.-J. & Cen, Z.-M. (2009). Acta Cryst. E65, m1085.
- Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A. G. (2002). *Polyhedron*, **21**, 2433–2443.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). *Inorg. Chem. Commun.* **7**, 238–240.
- Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.

Acta Cryst. (2011). E67, m96 [doi:10.1107/S160053681005186X]

Bis{N,N-bis[(diphenylphosphanyl)methyl]aniline- $\kappa^2 P, P'$ }copper(I) tetrafluoridoborate

J. Shang, L.-L. Huang, T.-H. Huang, K. Ma and Q.-L. Ni

Comment

Copper(I) complexes containing phosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Saravanabharathi *et al.*, 2002; Chen *et al.*,2004; Sivasankar *et al.*, 2004; Wang *et al.*, 2008; Huang *et al.*, 2009). Herein, we report the synthesis and crystal structure of the new mononuclear copper(I) title complex.

In the cation of the title compound, the copper(I) atom adopts a distorted tetrahedral geometry provided by four P atoms from two phosphine ligands (Fig. 1). The Cu—P bond distances are in the range 2.2972 (12)–2.3153 (14) Å. An intramolecular C—H···N hydrogen bond is present (Table 1). In the crystal structure, intermolecular C—H··· π interactions link adjacent cations into chains parallel to the *a* axis (Fig. 2). Intermolecular C—H···F hydrogen bonds involving the tetrafluoridoborate anion are also observed (Table 1).

Experimental

[Cu(CH₃CN)₄]BF₄ (0.0158 0.05 added N,Ng, mmol) was with stirring to а solution of bis[(diphenylphosphanyl)methyl]aniline (0.0489 g, 0.10 mmol) in CH₃CN (5 ml). The resulting solution was allowed to stir for 1 h at room temperature. Slow diffusion of diethyl ether into the solution geve colourless block crystals suitable for X-ray analysis after three days.

Refinement

Anisotropic displacement parameters were applied to all non-hydrogen atoms. All hydrogen atoms were generated geometrically and refined with a riding model, with C–H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 25% probability level. Hydrogen atoms are omitted for clarity.

Fig. 2. Partial crystal packing of the title compound showing the chains of cations parallel to the *a* axis. C—H··· π interactions are shown as dashed lines.

Bis{*N*,*N*-bis[(diphenylphosphanyl)methyl]aniline- $\kappa^2 P$,*P*'}copper(I) tetrafluoridoborate

Crystal data	
[Cu(C ₃₂ H ₂₉ NP ₂) ₂]BF ₄	Z = 2
$M_r = 1129.35$	F(000) = 1172
Triclinic, <i>P</i> T	$D_{\rm x} = 1.317 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 11.004 (2) Å	Cell parameters from 1884 reflections
b = 12.642 (3) Å	$\theta = 2.3 - 21.7^{\circ}$
c = 21.725 (4) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 79.601 \ (3)^{\circ}$	T = 296 K
$\beta = 78.593 \ (3)^{\circ}$	Block, colourless
$\gamma = 76.110 \ (3)^{\circ}$	$0.20\times0.10\times0.10~mm$
$V = 2847.7 (10) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD diffractometer	6522 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
φ and ω scans	$h = -13 \rightarrow 12$
15689 measured reflections	$k = -14 \rightarrow 15$
9918 independent reflections	<i>l</i> = −25→22

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.198$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.114P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
9918 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
685 parameters	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.0405 (11) 0.1283 (4) 0.5357 (4) 0.15568 (19) C2 0.0669(5)0.4537 (4) 0.1860(2)0.0449 (12) H2 0.0478 0.4436 0.2300 0.054*C3 0.0330(5)0.3855(5)0.1521(2)0.0590(14)H3 -0.00780.3297 0.1733 0.071* C4 0.0596 (6) 0.4004(5)0.0871(3)0.0689(17)H4 0.0375 0.3543 0.0642 0.083* C5 0.1186 (6) 0.4831 (6) 0.0561 (2) 0.0688 (17) Н5 0.1356 0.4938 0.0120 0.083* C6 0.1531 (5) 0.5507 (4) 0.0896(2)0.0519(13) H6 0.1931 0.6068 0.0680 0.062* C7 0.0813 (4) 0.7133 (4) 0.19308 (18) 0.0377 (10) H7A 0.0273 0.7111 0.2342 0.045* H7B 0.0275 0.7280 0.045* 0.1608 C8 0.2195 (5) 0.8354 (4) 0.09759 (18) 0.0450 (12) C9 0.1341 (6) 0.8604 (5) 0.0548 (2) 0.0611 (15) H9 0.0475 0.073* 0.8787 0.0695 C10 0.090(2)0.1778 (9) 0.8581(5)-0.0101(3)H10 0.1208 0.8760 -0.03870.108* C11 0.3080 (9) 0.097 (3) 0.8288 (7) -0.0315 (3) H11 0.3376 0.8259 -0.07450.116* C12 0.3903 (7) 0.8051 (6) 0.0092 (3) 0.084(2)H12 0.4767 0.7863 -0.00590.100* 0.3493 (5) C13 0.8078 (5) 0.0743 (2) 0.0588 (15) H13 0.4081 0.7912 0.1019 0.071* C14 0.0359 (4) 0.9437 (4) 0.19362 (19) 0.0396 (11) C15 0.0258 (6) 1.0410 (5) 0.1515 (3) 0.0627 (15) H15 0.0863 1.0475 0.075* 0.1153 C16 -0.0767(7)1.1301 (5) 0.1640 (3) 0.0762 (18) H16 -0.08621.1944 0.1352 0.091* C17 -0.1633(6)1.1207 (5) 0.2197 (3) 0.0793 (19) H17 0.095* -0.23041.1794 0.2285 C18 -0.1505(6)1.0288 (6) 0.2601 (3) 0.087(2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18	-0.2085	1.0237	0.2974	0.104*
C19	-0.0523 (6)	0.9399 (5)	0.2478 (3)	0.0682 (16)
H19	-0.0459	0.8760	0.2770	0.082*
C20	0.2100 (4)	0.5532 (4)	0.24857 (19)	0.0406 (11)
H20A	0.2284	0.4741	0.2492	0.049*
H20B	0.1418	0.5714	0.2833	0.049*
C21	0.4793 (5)	0.5208 (4)	0.20502 (19)	0.0407 (11)
C22	0.4657 (5)	0.5370 (5)	0.1414 (2)	0.0671 (16)
H22	0.3926	0.5823	0.1284	0.081*
C23	0.5597 (7)	0.4862 (7)	0.0976 (3)	0.087 (2)
H23	0.5467	0.4926	0.0559	0.105*
C24	0.6731 (7)	0.4258 (6)	0.1151 (3)	0.084 (2)
H24	0.7386	0.3957	0.0849	0.101*
C25	0.6878 (6)	0.4109 (5)	0.1773 (3)	0.081 (2)
H25	0.7634	0.3703	0.1898	0.097*
C26	0.5890 (5)	0.4568 (4)	0.2220 (3)	0.0594 (14)
H26	0.5985	0.4433	0.2645	0.071*
C27	0.3773 (4)	0.5157 (4)	0.33799 (19)	0.0398 (11)
C28	0.4793 (5)	0.5274 (4)	0.3640 (2)	0.0472 (12)
H28	0.5315	0.5747	0.3423	0.057*
C29	0.5021 (5)	0.4674 (5)	0.4228 (2)	0.0590 (15)
H29	0.5712	0.4734	0.4396	0.071*
C30	0.4250 (6)	0.4008 (5)	0.4553 (2)	0.0636 (16)
H30	0.4405	0.3626	0.4947	0.076*
C31	0.3232 (6)	0.3890 (5)	0.4307 (2)	0.0688 (17)
H31	0.2706	0.3428	0.4534	0.083*
C32	0.2998 (5)	0.4458 (5)	0.3725 (2)	0.0582 (14)
H32	0.2315	0.4374	0.3560	0.070*
C33	0.5601 (5)	0.9522 (4)	0.3714 (2)	0.0475 (12)
C34	0.6664 (6)	0.8906 (6)	0.3953 (3)	0.0729 (18)
H34	0.6973	0.8177	0.3885	0.088*
C35	0.7264 (7)	0.9388 (8)	0.4297 (3)	0.106 (3)
H35	0.7970	0.8973	0.4469	0.127*
C36	0.6832 (9)	1.0463 (9)	0.4388 (4)	0.125 (4)
H36	0.7266	1.0790	0.4601	0.150*
C37	0.5780 (10)	1.1046 (8)	0.4169 (5)	0.130 (4)
H37	0.5466	1.1770	0.4245	0.156*
C38	0.5155 (7)	1.0578 (6)	0.3830 (3)	0.087 (2)
H38	0.4425	1.0990	0.3680	0.105*
C39	0.5760 (4)	0.8560 (4)	0.28194 (18)	0.0431 (11)
H39A	0.6091	0.7788	0.2955	0.052*
H39B	0.6473	0.8920	0.2682	0.052*
C40	0.6242 (4)	0.8228 (4)	0.15314 (18)	0.0363 (10)
C41	0.6929 (5)	0.7163 (4)	0.1626 (2)	0.0537 (13)
H41	0.6694	0.6696	0.1990	0.064*
C42	0.7968 (5)	0.6777 (5)	0.1186 (3)	0.0600 (14)
H42	0.8421	0.6056	0.1257	0.072*
C43	0.8326 (6)	0.7450 (6)	0.0652 (3)	0.0733 (18)
H43	0.9036	0.7199	0.0363	0.088*

C44	0.7635 (7)	0.8495 (6)	0.0546 (3)	0.088 (2)
H44	0.7864	0.8953	0.0177	0.106*
C45	0.6589 (6)	0.8883 (5)	0.0986 (2)	0.0667 (16)
H45	0.6123	0.9598	0.0906	0.080*
C46	0.4497 (4)	1.0171 (4)	0.18874 (19)	0.0411 (11)
C47	0.3670 (5)	1.0561 (4)	0.1449 (2)	0.0523 (13)
H47	0.3365	1.0060	0.1287	0.063*
C48	0.3294 (6)	1.1660 (5)	0.1248 (3)	0.0652 (15)
H48	0.2744	1.1895	0.0953	0.078*
C49	0.3720 (6)	1.2415 (5)	0.1480 (3)	0.0702 (17)
H49	0.3462	1.3163	0.1344	0.084*
C50	0.4532 (6)	1.2058 (5)	0.1916 (3)	0.0729 (17)
H50	0.4823	1.2567	0.2078	0.088*
C51	0.4924 (5)	1.0938 (5)	0.2117 (2)	0.0593 (14)
H51	0.5480	1.0705	0.2409	0.071*
C52	0.4153 (4)	0.8343 (4)	0.37680 (18)	0.0410 (11)
H52A	0.3931	0.8574	0.4186	0.049*
H52B	0.4642	0.7593	0.3811	0.049*
C53	0.1792 (4)	0.9775 (4)	0.35609 (18)	0.0421 (11)
C54	0.1717 (5)	1.0548 (5)	0.3028 (2)	0.0643 (16)
H54	0.2039	1.0338	0.2629	0.077*
C55	0.1158 (7)	1.1645 (6)	0.3087 (3)	0.089(2)
H55	0.1134	1.2168	0.2726	0.106*
C56	0.0644 (7)	1.1962 (5)	0.3667 (3)	0.091 (2)
H56	0.0290	1.2698	0.3704	0.109*
C57	0.0656 (7)	1.1180 (5)	0.4196 (3)	0.092 (2)
H57	0.0268	1.1380	0.4591	0.111*
C58	0.1241 (6)	1.0102 (5)	0.4143 (2)	0.0743 (19)
H58	0.1266	0.9584	0.4506	0.089*
C59	0.1851 (4)	0.7525 (4)	0.41001 (17)	0.0386 (11)
C60	0.0745 (5)	0.7287 (5)	0.4004 (2)	0.0557 (14)
H60	0.0452	0.7556	0.3621	0.067*
C61	0.0068 (6)	0.6656 (5)	0.4471 (2)	0.0658 (16)
H61	-0.0682	0.6513	0.4403	0.079*
C62	0.0505 (6)	0.6241 (4)	0.5034 (2)	0.0558 (14)
H62	0.0047	0.5818	0.5348	0.067*
C63	0.1599 (5)	0.6443 (4)	0.5136 (2)	0.0544 (14)
H63	0.1896	0.6145	0.5515	0.065*
C64	0.2287 (5)	0.7098 (4)	0.4672 (2)	0.0498 (12)
H64	0.3029	0.7246	0.4747	0.060*
Cu1	0.32004 (5)	0.78482 (4)	0.24698 (2)	0.03413 (18)
N1	0.1681 (4)	0.6071 (3)	0.18859 (15)	0.0399 (9)
N2	0.4930 (3)	0.9051 (3)	0.33536 (15)	0.0393 (9)
P2	0.35284 (11)	0.59476 (10)	0.26073 (5)	0.0351 (3)
P1	0.16788 (11)	0.82563 (10)	0.18260 (4)	0.0349 (3)
P3	0.49074 (11)	0.86914 (10)	0.21416 (4)	0.0348 (3)
P4	0.26725 (11)	0.83797 (10)	0.34647 (4)	0.0361 (3)
В	0.8319 (7)	0.5762 (7)	0.3354 (3)	0.071 (2)
F1	0.7468 (3)	0.5932 (3)	0.38924 (16)	0.0918 (12)

F2	0.7789 (5)	0.5524 (6)	0.2914 (2)	0.165 (3)
F3	0.8676 (4)	0.6782 (4)	0.3124 (2)	0.1322 (18)
F4	0.9401 (4)	0.5048 (4)	0.34690 (16)	0.0974 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.033 (3)	0.045 (3)	0.047 (2)	-0.004 (2)	-0.015 (2)	-0.012 (2)
C2	0.051 (3)	0.043 (3)	0.047 (2)	-0.015 (2)	-0.013 (2)	-0.0075 (19)
C3	0.064 (4)	0.049 (3)	0.074 (3)	-0.016 (3)	-0.026 (3)	-0.012 (2)
C4	0.081 (5)	0.065 (4)	0.070 (3)	-0.004 (4)	-0.030 (3)	-0.031 (3)
C5	0.075 (4)	0.088 (5)	0.049 (3)	-0.013 (4)	-0.022 (3)	-0.016 (3)
C6	0.060 (4)	0.056 (3)	0.043 (2)	-0.014 (3)	-0.019 (2)	-0.002 (2)
C7	0.035 (3)	0.042 (3)	0.037 (2)	-0.005 (2)	-0.0119 (18)	-0.0056 (17)
C8	0.055 (3)	0.048 (3)	0.035 (2)	-0.017 (2)	-0.011 (2)	-0.0022 (18)
C9	0.071 (4)	0.073 (4)	0.042 (2)	-0.019 (3)	-0.018 (2)	-0.001 (2)
C10	0.156 (8)	0.082 (5)	0.041 (3)	-0.031 (5)	-0.043 (4)	0.004 (3)
C11	0.145 (8)	0.117 (6)	0.034 (3)	-0.056 (6)	0.006 (4)	-0.010 (3)
C12	0.085 (5)	0.109 (6)	0.057 (3)	-0.040 (4)	0.020 (3)	-0.022 (3)
C13	0.062 (4)	0.070 (4)	0.052 (3)	-0.032 (3)	0.002 (3)	-0.015 (2)
C14	0.038 (3)	0.040 (3)	0.042 (2)	-0.009 (2)	-0.0149 (19)	0.0029 (18)
C15	0.071 (4)	0.054 (4)	0.067 (3)	-0.012 (3)	-0.022 (3)	-0.007 (3)
C16	0.095 (5)	0.037 (4)	0.104 (5)	-0.007 (3)	-0.047 (4)	-0.005 (3)
C17	0.064 (4)	0.052 (4)	0.106 (5)	0.010 (3)	-0.002 (4)	-0.013 (3)
C18	0.072 (5)	0.054 (4)	0.115 (5)	0.008 (4)	0.001 (4)	-0.008 (4)
C19	0.068 (4)	0.055 (4)	0.072 (3)	-0.002 (3)	-0.009 (3)	-0.002 (3)
C20	0.042 (3)	0.040 (3)	0.044 (2)	-0.014 (2)	-0.016 (2)	-0.0008 (18)
C21	0.040 (3)	0.035 (3)	0.048 (2)	-0.007 (2)	-0.008 (2)	-0.0074 (18)
C22	0.052 (4)	0.088 (5)	0.061 (3)	-0.003 (3)	-0.011 (3)	-0.024 (3)
C23	0.078 (5)	0.125 (6)	0.064 (3)	-0.022 (5)	0.009 (3)	-0.046 (4)
C24	0.076 (5)	0.081 (5)	0.086 (4)	-0.018 (4)	0.031 (4)	-0.037 (4)
C25	0.058 (4)	0.061 (4)	0.104 (5)	0.013 (3)	0.005 (4)	-0.017 (3)
C26	0.055 (4)	0.046 (3)	0.070 (3)	-0.003 (3)	-0.010 (3)	-0.002 (2)
C27	0.032 (3)	0.040 (3)	0.045 (2)	-0.001 (2)	-0.011 (2)	-0.0049 (18)
C28	0.048 (3)	0.043 (3)	0.053 (3)	-0.008 (2)	-0.016 (2)	-0.008 (2)
C29	0.061 (4)	0.072 (4)	0.044 (2)	-0.003 (3)	-0.022 (2)	-0.008 (2)
C30	0.074 (4)	0.073 (4)	0.037 (2)	-0.005 (3)	-0.019 (3)	0.006 (2)
C31	0.077 (4)	0.071 (4)	0.055 (3)	-0.029 (3)	-0.014 (3)	0.021 (3)
C32	0.058 (4)	0.065 (4)	0.059 (3)	-0.029 (3)	-0.026 (2)	0.013 (2)
C33	0.050 (3)	0.056 (3)	0.045 (2)	-0.017 (3)	-0.009 (2)	-0.018 (2)
C34	0.077 (5)	0.077 (5)	0.079 (4)	-0.016 (4)	-0.028 (3)	-0.030 (3)
C35	0.089 (6)	0.149 (8)	0.101 (5)	-0.029 (5)	-0.042 (4)	-0.042 (5)
C36	0.112 (8)	0.164 (10)	0.139 (7)	-0.046 (7)	-0.021 (6)	-0.103 (7)
C37	0.118 (8)	0.124 (8)	0.179 (9)	-0.019 (6)	-0.029 (7)	-0.108 (7)
C38	0.077 (5)	0.080 (5)	0.119 (5)	-0.002 (4)	-0.031 (4)	-0.053 (4)
C39	0.038 (3)	0.056 (3)	0.040 (2)	-0.010 (2)	-0.0091 (19)	-0.015 (2)
C40	0.033 (3)	0.039 (3)	0.036 (2)	-0.008 (2)	-0.0007 (18)	-0.0099 (17)
C41	0.051 (3)	0.054 (4)	0.053 (3)	-0.008 (3)	-0.004 (2)	-0.008 (2)

C42	0.047 (3)	0.054 (4)	0.078 (3)	0.003 (3)	-0.008 (3)	-0.025 (3)
C43	0.060 (4)	0.085 (5)	0.068 (3)	-0.008 (4)	0.017 (3)	-0.034 (3)
C44	0.087 (5)	0.092 (5)	0.061 (3)	-0.012 (4)	0.032 (3)	-0.004 (3)
C45	0.073 (4)	0.046 (3)	0.061 (3)	0.001 (3)	0.017 (3)	-0.005 (2)
C46	0.033 (3)	0.042 (3)	0.046 (2)	-0.009 (2)	0.003 (2)	-0.0103 (19)
C47	0.056 (3)	0.044 (3)	0.059 (3)	-0.006 (3)	-0.017 (2)	-0.007 (2)
C48	0.059 (4)	0.050 (4)	0.083 (4)	-0.008 (3)	-0.016 (3)	0.000 (3)
C49	0.068 (4)	0.038 (3)	0.095 (4)	-0.009 (3)	0.000 (3)	0.001 (3)
C50	0.088 (5)	0.041 (4)	0.095 (4)	-0.021 (3)	-0.010 (4)	-0.020 (3)
C51	0.063 (4)	0.054 (4)	0.065 (3)	-0.016 (3)	-0.015 (3)	-0.007 (2)
C52	0.041 (3)	0.048 (3)	0.037 (2)	-0.012 (2)	-0.0062 (19)	-0.0108 (19)
C53	0.039 (3)	0.049 (3)	0.036 (2)	-0.008 (2)	-0.0015 (19)	-0.0072 (19)
C54	0.069 (4)	0.063 (4)	0.047 (3)	0.001 (3)	0.007 (2)	-0.009 (2)
C55	0.113 (6)	0.066 (5)	0.065 (3)	0.000 (4)	0.005 (4)	0.000 (3)
C56	0.123 (6)	0.045 (4)	0.090 (4)	0.003 (4)	-0.001 (4)	-0.016 (3)
C57	0.131 (6)	0.062 (5)	0.069 (4)	0.001 (4)	0.011 (4)	-0.031 (3)
C58	0.108 (5)	0.055 (4)	0.047 (3)	-0.003 (4)	0.005 (3)	-0.010 (2)
C59	0.047 (3)	0.036 (3)	0.0306 (19)	-0.006 (2)	-0.0043 (18)	-0.0049 (16)
C60	0.057 (4)	0.071 (4)	0.047 (2)	-0.026 (3)	-0.013 (2)	-0.007 (2)
C61	0.070 (4)	0.075 (4)	0.059 (3)	-0.036 (3)	-0.004 (3)	-0.004 (3)
C62	0.069 (4)	0.043 (3)	0.048 (3)	-0.012 (3)	0.010 (2)	-0.008 (2)
C63	0.059 (4)	0.056 (4)	0.039 (2)	-0.008 (3)	-0.007 (2)	0.008 (2)
C64	0.044 (3)	0.056 (3)	0.047 (2)	-0.008 (3)	-0.008 (2)	-0.005 (2)
Cu1	0.0349 (4)	0.0381 (3)	0.0309 (3)	-0.0084 (3)	-0.0073 (2)	-0.0056 (2)
N1	0.042 (2)	0.036 (2)	0.0456 (18)	-0.0072 (19)	-0.0185 (17)	-0.0045 (15)
N2	0.036 (2)	0.049 (2)	0.0366 (17)	-0.0130 (19)	-0.0030 (15)	-0.0121 (15)
P2	0.0338 (7)	0.0367 (7)	0.0362 (5)	-0.0069 (5)	-0.0101 (5)	-0.0042 (4)
P1	0.0369 (7)	0.0372 (7)	0.0317 (5)	-0.0084 (5)	-0.0096 (4)	-0.0026 (4)
P3	0.0336 (7)	0.0389 (7)	0.0323 (5)	-0.0091 (5)	-0.0029 (4)	-0.0061 (4)
P4	0.0360 (7)	0.0420 (7)	0.0303 (5)	-0.0078 (6)	-0.0041 (4)	-0.0073 (4)
В	0.049 (4)	0.115 (7)	0.040 (3)	-0.018 (4)	-0.010 (3)	0.019 (3)
F1	0.074 (3)	0.105 (3)	0.085 (2)	-0.030 (2)	0.0185 (18)	-0.004 (2)
F2	0.116 (4)	0.293 (8)	0.120 (4)	-0.052 (4)	-0.040 (3)	-0.080 (4)
F3	0.109 (4)	0.118 (4)	0.146 (4)	-0.049 (3)	0.029 (3)	0.022 (3)
F4	0.077 (3)	0.116 (3)	0.076 (2)	0.008 (2)	-0.0128 (19)	0.008 (2)

Geometric parameters (Å, °)

C1—C2	1.370 (6)	C34—H34	0.9300
C1—C6	1.394 (6)	C35—C36	1.365 (12)
C1—N1	1.438 (5)	С35—Н35	0.9300
С2—С3	1.384 (6)	C36—C37	1.338 (11)
С2—Н2	0.9300	С36—Н36	0.9300
C3—C4	1.372 (7)	C37—C38	1.385 (9)
С3—Н3	0.9300	С37—Н37	0.9300
C4—C5	1.366 (8)	C38—H38	0.9300
C4—H4	0.9300	C39—N2	1.461 (5)
С5—С6	1.376 (7)	C39—P3	1.860 (4)
С5—Н5	0.9300	С39—Н39А	0.9700

С6—Н6	0.9300	С39—Н39В	0.9700
C7—N1	1.456 (5)	C40—C45	1.362 (6)
C7—P1	1.850 (5)	C40—C41	1.378 (7)
С7—Н7А	0.9700	C40—P3	1.831 (4)
С7—Н7В	0.9700	C41—C42	1.387 (7)
C8—C9	1.395 (7)	C41—H41	0.9300
C8—C13	1.399 (7)	C42—C43	1.359 (8)
C8—P1	1.812 (4)	C42—H42	0.9300
C9—C10	1.400 (7)	C43—C44	1.361 (9)
С9—Н9	0.9300	С43—Н43	0.9300
C10-C11	1.396 (10)	C44—C45	1.394 (7)
C10—H10	0.9300	C44—H44	0.9300
C11—C12	1.336 (10)	C45—H45	0.9300
C11—H11	0.9300	C46—C51	1.376 (7)
C12—C13	1.400 (7)	C46—C47	1.392 (7)
C12—H12	0.9300	C46—P3	1.825 (5)
С13—Н13	0.9300	C47—C48	1.367 (7)
C14—C19	1.371 (7)	C47—H47	0.9300
C14—C15	1.390 (7)	C48—C49	1.366 (8)
C14—P1	1.829 (5)	C48—H48	0.9300
C15—C16	1.411 (8)	C49—C50	1.374 (8)
C15—H15	0.9300	С49—Н49	0.9300
C16—C17	1.389 (9)	C50—C51	1.393 (8)
C16—H16	0.9300	С50—Н50	0.9300
C17—C18	1.320 (9)	C51—H51	0.9300
C17—H17	0.9300	C52—N2	1.454 (5)
C18—C19	1.384 (8)	C52—P4	1.862 (4)
C18—H18	0.9300	С52—Н52А	0.9700
С19—Н19	0.9300	С52—Н52В	0.9700
C20—N1	1.463 (5)	C53—C54	1.376 (7)
C20—P2	1.851 (4)	C53—C58	1.380 (6)
C20—H20A	0.9700	C53—P4	1.824 (5)
С20—Н20В	0.9700	C54—C55	1.393 (8)
C21—C26	1.359 (7)	С54—Н54	0.9300
C21—C22	1.392 (6)	C55—C56	1.364 (8)
C21—P2	1.842 (4)	С55—Н55	0.9300
C22—C23	1.380 (8)	C56—C57	1.374 (9)
C22—H22	0.9300	С56—Н56	0.9300
C23—C24	1.382 (9)	C57—C58	1.375 (8)
C23—H23	0.9300	С57—Н57	0.9300
C24—C25	1.366 (9)	C58—H58	0.9300
C24—H24	0.9300	C59—C60	1.383 (7)
C25—C26	1.395 (8)	C59—C64	1.392 (6)
C25—H25	0.9300	C59—P4	1.824 (4)
C26—H26	0.9300	C60—C61	1.384 (7)
C2/—C32	1.392 (7)	C60—H60	0.9300
C2/—C28	1.401 (6)	C61—C62	1.373 (7)
C2/—P2	1.826 (4)	C61—H61	0.9300
C28—C29	1.399 (6)	C62—C63	1.355 (7)

C28—H28	0.9300	С62—Н62	0.9300
C29—C30	1.348 (8)	C63—C64	1.404 (7)
С29—Н29	0.9300	С63—Н63	0.9300
C30—C31	1.382 (8)	С64—Н64	0.9300
С30—Н30	0.9300	Cu1—P1	2.2972 (12)
C31—C32	1.376 (7)	Cu1—P4	2.3024 (11)
C31—H31	0.9300	Cu1—P3	2.3087 (13)
С32—Н32	0.9300	Cu1—P2	2.3153 (14)
C33—C38	1.358 (8)	B—F2	1.324 (8)
C33—C34	1.379 (8)	B—F4	1.347 (8)
C33—N2	1.456 (5)	B—F1	1.360 (7)
C34—C35	1.386 (8)	B—F3	1.415 (9)
C2—C1—C6	118.3 (4)	N2—C39—H39B	109.3
C2	123.3 (4)	Р3—С39—Н39В	109.3
C6—C1—N1	118.3 (4)	H39A—C39—H39B	107.9
C1—C2—C3	121.0 (4)	C45—C40—C41	118.2 (4)
С1—С2—Н2	119.5	C45—C40—P3	123.2 (4)
С3—С2—Н2	119.5	C41—C40—P3	118.6 (3)
C4—C3—C2	120.0 (5)	C40—C41—C42	121.0 (5)
С4—С3—Н3	120.0	C40—C41—H41	119.5
С2—С3—Н3	120.0	C42—C41—H41	119.5
C5—C4—C3	119.7 (5)	C43—C42—C41	120.2 (6)
С5—С4—Н4	120.1	C43—C42—H42	119.9
C3—C4—H4	120.1	C41—C42—H42	119.9
C4—C5—C6	120.5 (5)	C42—C43—C44	119.3 (5)
С4—С5—Н5	119.7	C42—C43—H43	120.3
С6—С5—Н5	119.7	C44—C43—H43	120.3
C5—C6—C1	120.4 (5)	C43—C44—C45	120.6 (6)
С5—С6—Н6	119.8	C43—C44—H44	119.7
С1—С6—Н6	119.8	C45—C44—H44	119.7
N1—C7—P1	111.5 (3)	C40—C45—C44	120.7 (6)
N1—C7—H7A	109.3	C40—C45—H45	119.7
Р1—С7—Н7А	109.3	C44—C45—H45	119.7
N1—C7—H7B	109.3	C51—C46—C47	117.4 (5)
Р1—С7—Н7В	109.3	C51—C46—P3	124.1 (4)
H7A—C7—H7B	108.0	C47—C46—P3	118.5 (4)
C9—C8—C13	118.6 (4)	C48—C47—C46	121.8 (5)
C9—C8—P1	122.3 (4)	C48—C47—H47	119.1
C13—C8—P1	118.9 (4)	C46—C47—H47	119.1
C8—C9—C10	120.5 (6)	C49—C48—C47	120.4 (6)
С8—С9—Н9	119.7	C49—C48—H48	119.8
С10—С9—Н9	119.7	C47—C48—H48	119.8
C11—C10—C9	119.2 (6)	C48—C49—C50	119.3 (6)
C11—C10—H10	120.4	С48—С49—Н49	120.3
C9—C10—H10	120.4	С50—С49—Н49	120.3
C12—C11—C10	120.5 (5)	C49—C50—C51	120.3 (5)
C12—C11—H11	119.7	C49—C50—H50	119.8
C10—C11—H11	119.7	С51—С50—Н50	119.8
C11—C12—C13	121.4 (6)	C46—C51—C50	120.8 (5)

011 012 1112	110.2	046 051 1151	110 (
C12—C12—H12	119.3	C40—C51—H51	119.6
C13 - C12 - H12	119.5	C30—C51—H51	119.0
$C_8 = C_{13} = C_{12}$	119.7 (5)	N2-C52-P4	112.5 (3)
C12 C12 H12	120.1	N2-C52-H52A	109.1
C12-C13-H13	120.1	P4—C52—H52A	109.1
C19 - C14 - C13	118.0 (5)	N2-C52-H52B	109.1
C19C14P1	119.1 (4)	P4—C52—H52B	109.1
CIS-CI4-PI	122.7 (4)	H52A—C52—H52B	107.8
C14—C15—C16	119.7 (5)	C54—C53—C58	118.5 (5)
С14—С15—Н15	120.1	C54—C53—P4	118.2 (3)
С16—С15—Н15	120.1	C58—C53—P4	123.2 (4)
C17—C16—C15	119.4 (6)	C53—C54—C55	120.0 (5)
C17—C16—H16	120.3	С53—С54—Н54	120.0
C15—C16—H16	120.3	С55—С54—Н54	120.0
C18—C17—C16	120.2 (6)	C56—C55—C54	120.8 (6)
C18—C17—H17	119.9	С56—С55—Н55	119.6
C16—C17—H17	119.9	С54—С55—Н55	119.6
C17—C18—C19	121.1 (6)	C55—C56—C57	119.2 (6)
C17—C18—H18	119.5	С55—С56—Н56	120.4
C19—C18—H18	119.5	С57—С56—Н56	120.4
C14—C19—C18	121.6 (6)	C56—C57—C58	120.2 (5)
C14—C19—H19	119.2	С56—С57—Н57	119.9
C18—C19—H19	119.2	С58—С57—Н57	119.9
N1—C20—P2	112.4 (3)	C57—C58—C53	121.1 (5)
N1—C20—H20A	109.1	С57—С58—Н58	119.4
P2—C20—H20A	109.1	С53—С58—Н58	119.4
N1-C20-H20B	109.1	C60—C59—C64	118.7 (4)
P2—C20—H20B	109.1	C60—C59—P4	118.1 (3)
H20A-C20-H20B	107.9	C64—C59—P4	123.2 (4)
C26—C21—C22	118.2 (4)	C59—C60—C61	121.0 (5)
C26—C21—P2	123.3 (4)	С59—С60—Н60	119.5
C22—C21—P2	118.4 (4)	С61—С60—Н60	119.5
C23—C22—C21	120.5 (6)	C62—C61—C60	119.9 (5)
C23—C22—H22	119.8	С62—С61—Н61	120.1
C21—C22—H22	119.8	С60—С61—Н61	120.1
C22—C23—C24	120.5 (6)	C63—C62—C61	120.3 (5)
С22—С23—Н23	119.8	С63—С62—Н62	119.8
С24—С23—Н23	119.8	С61—С62—Н62	119.8
C25—C24—C23	119.1 (5)	C62—C63—C64	120.6 (5)
C25—C24—H24	120.4	С62—С63—Н63	119.7
C23—C24—H24	120.4	С64—С63—Н63	119.7
C24—C25—C26	119.9 (6)	C59—C64—C63	119.5 (5)
С24—С25—Н25	120.0	С59—С64—Н64	120.2
С26—С25—Н25	120.0	С63—С64—Н64	120.2
C21—C26—C25	121.6 (5)	P1—Cu1—P4	119.06 (5)
C21—C26—H26	119.2	P1—Cu1—P3	117.06 (4)
C25—C26—H26	119.2	P4—Cu1—P3	95.91 (4)
C32—C27—C28	118.6 (4)	P1—Cu1—P2	98.82 (4)
C32—C27—P2	123.8 (4)	P4—Cu1—P2	107.08 (4)

C28—C27—P2	117.6 (4)	P3—Cu1—P2	119.86 (5)
C29—C28—C27	119.4 (5)	C1—N1—C7	114.3 (3)
С29—С28—Н28	120.3	C1—N1—C20	113.8 (4)
С27—С28—Н28	120.3	C7—N1—C20	113.7 (3)
C30—C29—C28	120.7 (5)	C52—N2—C33	111.4 (3)
С30—С29—Н29	119.6	C52—N2—C39	114.9 (4)
С28—С29—Н29	119.6	C33—N2—C39	112.7 (3)
C29—C30—C31	120.7 (5)	C27—P2—C21	103.5 (2)
С29—С30—Н30	119.7	C27—P2—C20	101.0 (2)
С31—С30—Н30	119.7	C21—P2—C20	102.5 (2)
C32—C31—C30	119.8 (5)	C27—P2—Cu1	120.01 (15)
С32—С31—Н31	120.1	C21—P2—Cu1	117.57 (15)
С30—С31—Н31	120.1	C20—P2—Cu1	109.81 (15)
C31—C32—C27	120.9 (5)	C8—P1—C14	105.0 (2)
С31—С32—Н32	119.6	C8—P1—C7	98.7 (2)
С27—С32—Н32	119.6	C14—P1—C7	100.9 (2)
C38—C33—C34	119.4 (5)	C8—P1—Cu1	118.19 (17)
C38—C33—N2	119.5 (5)	C14—P1—Cu1	119.29 (14)
C34—C33—N2	121.2 (5)	C7—P1—Cu1	111.60 (14)
C33—C34—C35	119.0 (6)	C46—P3—C40	102.73 (19)
С33—С34—Н34	120.5	C46—P3—C39	104.1 (2)
С35—С34—Н34	120.5	C40—P3—C39	100.2 (2)
C36—C35—C34	120.8 (7)	C46—P3—Cu1	114.98 (15)
С36—С35—Н35	119.6	C40—P3—Cu1	123.12 (15)
С34—С35—Н35	119.6	C39—P3—Cu1	109.32 (15)
C37—C36—C35	119.7 (7)	C53—P4—C59	103.5 (2)
С37—С36—Н36	120.1	C53—P4—C52	101.4 (2)
С35—С36—Н36	120.1	C59—P4—C52	102.6 (2)
C36—C37—C38	120.5 (8)	C53—P4—Cu1	119.58 (13)
С36—С37—Н37	119.8	C59—P4—Cu1	118.25 (14)
С38—С37—Н37	119.8	C52—P4—Cu1	109.04 (13)
C33—C38—C37	120.6 (7)	F2—B—F4	114.2 (7)
С33—С38—Н38	119.7	F2—B—F1	111.4 (6)
С37—С38—Н38	119.7	F4—B—F1	112.6 (5)
N2—C39—P3	111.7 (3)	F2—B—F3	107.4 (6)
N2—C39—H39A	109.3	F4—B—F3	105.1 (5)
Р3—С39—Н39А	109.3	F1—B—F3	105.3 (6)
C6—C1—C2—C3	1.6 (7)	C32—C27—P2—C21	-105.7 (4)
N1—C1—C2—C3	-178.6 (5)	C28—C27—P2—C21	75.0 (4)
C1—C2—C3—C4	-0.7 (8)	C32—C27—P2—C20	0.1 (5)
C2—C3—C4—C5	-0.5 (9)	C28—C27—P2—C20	-179.2 (3)
C3—C4—C5—C6	0.9 (9)	C32—C27—P2—Cu1	120.8 (4)
C4—C5—C6—C1	0.0 (9)	C28—C27—P2—Cu1	-58.5 (4)
C2—C1—C6—C5	-1.2 (8)	C26—C21—P2—C27	-24.3 (5)
N1—C1—C6—C5	178.9 (5)	C22—C21—P2—C27	160.1 (4)
C13—C8—C9—C10	-0.2 (8)	C26—C21—P2—C20	-129.0 (4)
P1-C8-C9-C10	-174.6 (4)	C22—C21—P2—C20	55.4 (4)
C8—C9—C10—C11	1.0 (9)	C26—C21—P2—Cu1	110.5 (4)
C9-C10-C11-C12	-1.2 (11)	C22—C21—P2—Cu1	-65.1 (4)

C10-C11-C12-C13	0.5 (11)	N1—C20—P2—C27	179.4 (3)
C9—C8—C13—C12	-0.4 (8)	N1—C20—P2—C21	-73.9 (4)
P1—C8—C13—C12	174.2 (4)	N1—C20—P2—Cu1	51.7 (3)
C11—C12—C13—C8	0.3 (9)	P1—Cu1—P2—C27	-140.72 (17)
C19—C14—C15—C16	-3.0 (8)	P4—Cu1—P2—C27	-16.53 (18)
P1-C14-C15-C16	-178.1 (4)	P3—Cu1—P2—C27	90.97 (18)
C14—C15—C16—C17	2.7 (9)	P1—Cu1—P2—C21	92.04 (17)
C15—C16—C17—C18	-0.9 (11)	P4—Cu1—P2—C21	-143.77 (17)
C16—C17—C18—C19	-0.6 (12)	P3—Cu1—P2—C21	-36.28 (18)
C15-C14-C19-C18	1.5 (9)	P1—Cu1—P2—C20	-24.49 (14)
P1-C14-C19-C18	176.8 (5)	P4—Cu1—P2—C20	99.70 (15)
C17—C18—C19—C14	0.3 (11)	P3—Cu1—P2—C20	-152.80 (14)
C26—C21—C22—C23	2.1 (9)	C9—C8—P1—C14	-43.7 (5)
P2-C21-C22-C23	177.9 (5)	C13—C8—P1—C14	141.9 (4)
C21—C22—C23—C24	-5.3 (10)	C9—C8—P1—C7	60.1 (5)
C22—C23—C24—C25	4.3 (11)	C13—C8—P1—C7	-114.3 (4)
C23—C24—C25—C26	-0.2 (10)	C9—C8—P1—Cu1	-179.6 (4)
C22—C21—C26—C25	2.0 (8)	C13—C8—P1—Cu1	6.0 (5)
P2-C21-C26-C25	-173.6 (5)	C19—C14—P1—C8	156.6 (4)
C24—C25—C26—C21	-3.0 (9)	C15—C14—P1—C8	-28.3 (5)
C32—C27—C28—C29	1.3 (7)	C19—C14—P1—C7	54.4 (5)
P2-C27-C28-C29	-179.3 (4)	C15—C14—P1—C7	-130.5 (4)
C27—C28—C29—C30	-1.8 (8)	C19—C14—P1—Cu1	-68.1 (5)
C28—C29—C30—C31	1.2 (9)	C15—C14—P1—Cu1	107.0 (4)
C29—C30—C31—C32	-0.2 (9)	N1—C7—P1—C8	74.9 (3)
C30—C31—C32—C27	-0.3 (9)	N1—C7—P1—C14	-177.9 (3)
C28—C27—C32—C31	-0.3 (8)	N1—C7—P1—Cu1	-50.2 (3)
P2-C27-C32-C31	-179.6 (4)	P4—Cu1—P1—C8	155.58 (18)
C38—C33—C34—C35	-1.2 (10)	P3—Cu1—P1—C8	40.99 (19)
N2-C33-C34-C35	-179.5 (6)	P2—Cu1—P1—C8	-89.18 (18)
C33—C34—C35—C36	-1.4 (12)	P4—Cu1—P1—C14	26.00 (18)
C34—C35—C36—C37	3.3 (15)	P3—Cu1—P1—C14	-88.59 (17)
C35—C36—C37—C38	-2.5 (16)	P2—Cu1—P1—C14	141.24 (17)
C34—C33—C38—C37	1.9 (11)	P4—Cu1—P1—C7	-91.03 (15)
N2-C33-C38-C37	-179.8 (7)	P3—Cu1—P1—C7	154.38 (14)
C36—C37—C38—C33	-0.1 (15)	P2—Cu1—P1—C7	24.21 (15)
C45—C40—C41—C42	1.7 (8)	C51—C46—P3—C40	-96.1 (4)
P3—C40—C41—C42	-178.4 (4)	C47—C46—P3—C40	86.0 (4)
C40—C41—C42—C43	0.1 (8)	C51—C46—P3—C39	8.0 (4)
C41—C42—C43—C44	-1.7 (10)	C47—C46—P3—C39	-169.9 (4)
C42—C43—C44—C45	1.5 (11)	C51—C46—P3—Cu1	127.6 (4)
C41—C40—C45—C44	-1.9 (9)	C47—C46—P3—Cu1	-50.3 (4)
P3—C40—C45—C44	178.2 (5)	C45—C40—P3—C46	-10.2 (5)
C43—C44—C45—C40	0.3 (11)	C41—C40—P3—C46	169.9 (4)
C51—C46—C47—C48	0.2 (7)	C45—C40—P3—C39	-117.4 (5)
P3—C46—C47—C48	178.3 (4)	C41—C40—P3—C39	62.8 (4)
C46—C47—C48—C49	-0.4 (8)	C45—C40—P3—Cu1	121.4 (4)
C47—C48—C49—C50	0.1 (9)	C41—C40—P3—Cu1	-58.5 (4)
C48—C49—C50—C51	0.4 (9)	N2-C39-P3-C46	64.9 (4)

C47—C46—C51—C50	0.3 (7)	N2—C39—P3—C40	170.9 (3)
P3—C46—C51—C50	-177.7 (4)	N2-C39-P3-Cu1	-58.5 (4)
C49—C50—C51—C46	-0.6 (9)	P1—Cu1—P3—C46	47.73 (15)
C58—C53—C54—C55	3.6 (9)	P4—Cu1—P3—C46	-79.23 (15)
P4—C53—C54—C55	-174.0 (5)	P2—Cu1—P3—C46	167.20 (15)
C53—C54—C55—C56	-2.1 (11)	P1—Cu1—P3—C40	-78.72 (18)
C54—C55—C56—C57	-1.5 (12)	P4—Cu1—P3—C40	154.32 (18)
C55—C56—C57—C58	3.5 (12)	P2—Cu1—P3—C40	40.75 (18)
C56—C57—C58—C53	-2.0 (12)	P1—Cu1—P3—C39	164.39 (16)
C54—C53—C58—C57	-1.7 (9)	P4—Cu1—P3—C39	37.42 (16)
P4—C53—C58—C57	175.8 (5)	P2—Cu1—P3—C39	-76.15 (16)
C64—C59—C60—C61	1.2 (8)	C54—C53—P4—C59	-148.8 (4)
P4C59C60C61	-179.1 (4)	C58—C53—P4—C59	33.8 (5)
C59—C60—C61—C62	-1.1 (9)	C54—C53—P4—C52	105.2 (4)
C60—C61—C62—C63	-0.2 (9)	C58—C53—P4—C52	-72.3 (5)
C61—C62—C63—C64	1.4 (8)	C54—C53—P4—Cu1	-14.7 (5)
C60—C59—C64—C63	-0.1 (7)	C58—C53—P4—Cu1	167.9 (4)
P4—C59—C64—C63	-179.7 (4)	C60—C59—P4—C53	80.7 (4)
C62—C63—C64—C59	-1.2 (8)	C64—C59—P4—C53	-99.7 (4)
C2-C1-N1-C7	-97.9 (5)	C60—C59—P4—C52	-174.1 (4)
C6—C1—N1—C7	82.0 (5)	C64—C59—P4—C52	5.5 (4)
C2-C1-N1-C20	35.1 (6)	C60—C59—P4—Cu1	-54.2 (4)
C6-C1-N1-C20	-145.1 (4)	C64—C59—P4—Cu1	125.5 (3)
P1—C7—N1—C1	-141.0 (3)	N2—C52—P4—C53	-68.8 (3)
P1—C7—N1—C20	86.0 (4)	N2	-175.6 (3)
P2-C20-N1-C1	138.9 (3)	N2	58.3 (3)
P2-C20-N1-C7	-87.9 (4)	P1—Cu1—P4—C53	-46.61 (19)
P4—C52—N2—C33	146.8 (3)	P3—Cu1—P4—C53	78.89 (18)
P4—C52—N2—C39	-83.5 (4)	P2—Cu1—P4—C53	-157.37 (18)
C38—C33—N2—C52	-101.4 (6)	P1—Cu1—P4—C59	80.97 (18)
C34—C33—N2—C52	76.9 (6)	P3—Cu1—P4—C59	-153.52 (18)
C38—C33—N2—C39	127.7 (6)	P2—Cu1—P4—C59	-29.78 (18)
C34—C33—N2—C39	-54.0 (6)	P1—Cu1—P4—C52	-162.48 (16)
P3—C39—N2—C52	83.3 (4)	P3—Cu1—P4—C52	-36.97 (17)
P3—C39—N2—C33	-147.6 (3)	P2—Cu1—P4—C52	86.77 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C33-C38 and C1-C6 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C22—H22…N1	0.93	2.53	3.189 (6)	128
C7—H7A…F3 ⁱ	0.97	2.25	3.181 (6)	161
C18—H18···Cg1 ⁱ	0.93	2.72	3.653 (6)	177
C42—H42···Cg2 ⁱⁱ	0.93	2.88	3.678 (5)	144
Summatry adds: (i) $r=1$ y_{r} =: (ii) $r+1$ y_{r} =				

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

Fig. 2